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Abstract Contributing to bone-specific expression of the osteocalcin gene is the promoter element OC Box I
(299 to 276), which binds both Hox proteins and another nonhomeodomain factor (designated OCBP for osteocalcin-
box binding protein) (Hoffmann et al. [1996] J Cell Biochem 61:310–324). OCBP correlates with increased promoter
activity and may, therefore, be important to development or maintenance of the osteoblast phenotype. To identify
OCBP candidates, we used a multimerized OC Box I sequence to screen a ggt11 cDNA expression library, constructed
from the rat osteosarcoma osteoblastic ROS 17/2.8 cell line, for cDNA clones encoding factors that recognize this
element. Mutant OC Box I sequences that do not bind OCBP and/or homeodomain proteins were used to counterscreen
the cDNA isolates. Clones showing binding specificity were sequenced and further characterized for patterns of
expression in different tissues and cell lines. Among the characterized nonhomeodomain-related isolates, we identified
a nucleolin, a clone encoding rCAP2 that is related to myogenic differentiation and more importantly, a cDNA clone
containing a previously uncharacterized gene that has been designated as a cell differentiation-related factor (DRF).
DRF mRNA is highly expressed in ROS 17/2.8 cells and in a developmentally regulated pattern during osteoblast
differentiation, being upregulated at the postproliferative maturation transition and coinciding with the induction of
osteocalcin gene expression. The 7.7-kb transcript encoded by clone 44 is abundantly expressed in osteoblasts, but the
mRNA was not present at detectable levels in bone and soft tissues by Northern blot analysis. However, related
expressed sequence tags were recently reported in cDNA libraries of rat lung and mouse sympathetic ganglion. The
identification of DRF represents a novel osteoblast differentiation-specific marker related to osteocalcin expression. The
identification of DRF may further facilitate definition of gene regulatory mechanisms mediating the final stages of bone
cell differentiation J. Cell. Biochem. 80:156–168, 2000. © 2000 Wiley-Liss, Inc.
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Mesenchymal cells can differentiate into os-
teoblasts, chondrocytes, myocytes, and adipo-
cytes [Taylor and Jones, 1979; Grigoriadis et
al., 1988, 1990; Yamaguchi and Kahn, 1991].
The commitment of mesenchymal cells to the

osteoblastic lineage is influenced by several
factors including members of the transforming
growth factor-b family, particularly, the bone
morphogenic protein 2 (BMP-2), and the
RUNX/CBFA/AML runt domain transcription
factor family; most significantly, CBFA1/AML-3
[Merriman et al., 1995; Ducy et al., 1997; Geof-
froy et al., 1995; Otto et al., 1997; Komori et al.,
1997; Banerjee et al., 1996a, 1997]. However,
control of cellular phenotype involves multiple
factors that regulate the expression of tissue-
specific genes throughout development. For ex-
ample, Msx-2 and Dlx-5 homeodomain factors
influence osteoblast differentiation and/or bone-
specific gene expression [Hoffmann et al., 1994;
Ryoo et al., 1997; Towler et al., 1994].
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Osteoblast development in culture is charac-
terized by progression through sequential
stages of differentiation (i.e., cell growth, for-
mation of the extracellular matrix, matrix mat-
uration, and mineralization). Each stage is
marked by the temporal expression of specific
genes. During the onset of extracellular matrix
formation, collagen type I (a1), fibronectin, and
transforming growth factor b (TGF-b) are ex-
pressed during cell growth. The postprolifera-
tive matrix maturation period is characterized
by expression of alkaline phosphatase, while
during mineralization, expression of osteopon-
tin and osteocalcin is upregulated (reviewed in
[Lian et al., 1992; Stein and Lian, 1993]). This
progression of gene expression is also observed
in vivo during development [Weinreb et al.,
1990; Nakase et al., 1994; Sommer et al., 1996].
Factors that bind to promoter elements in-
volved in the bone-specific expression of the
osteocalcin gene have proven to be candidates
for the control of development of the osteoblast
phenotype [Merriman et al., 1995; Banerjee et
al., 1997; Ducy et al., 1997]. Therefore, further
characterization of factors interacting with
highly conserved OC promoter elements may
yield novel insights into developmental control
of the bone cell phenotype.

Several elements in the rat osteocalcin pro-
moter have been shown to control tissue-
specific expression of this gene. These elements
include the three RUNX2/CBFA1/AML-3 rec-
ognition sites [Merriman et al., 1995] and the
OC Box I, which is located in the proximal
osteocalcin promoter and is part of a minimal
promoter of 108 nucleotides that can regulate
tissue-specific expression [Heinrichs et al.,
1995; Hoffmann et al., 1996]. The OC Box I is a
highly conserved 24 nucleotide sequence [Lian
et al., 1989a] that has been shown to bind the
homeodomain proteins Msx-1 and Msx-2 [Hoff-
mann et al., 1994; Towler et al., 1994] and
Dlx-5 [Ryoo et al., 1997]. In addition, a nonho-
meodomain protein in nuclear extracts from
osteoblasts associates with this transcription
element. This nonhomeodomain protein has
been found only in nuclear extracts from bone-
derived cell lines and was named the OCBP for
OC Box binding protein [Hoffmann et al.,
1996]. Promoter elements similar to OC Box I
are found in the collagen type I [Goldberg et al.,
1995; Rossert et al., 1996; Dodig et al., 1996],
bone sialoprotein [Li and Sodek, 1993; Yang
and Gerstenfeld, 1997] promoters, and os-

teopontin [Yang and Gerstenfeld, 1997], fur-
ther suggesting the importance of this element
in regulation of bone-specific transcription.

We therefore used OC Box I sequences to
isolate DNA binding proteins from a lgt11 ex-
pression library constructed from the cDNA of
rat osteosarcoma cells, ROS 17/2.8. Northern
analysis using the isolates to probe RNA from
different cell and tissue types as well as from
osteoblast cultures at various stages during
development revealed that expression of one
novel clone (clone 44) is continuously increased
during osteoblast differentiation. This clone,
designated differentiation-related factor
(DRF), represents a novel marker to dissect
gene regulatory mechanisms during bone cell
phenotype development.

MATERIALS AND METHODS

Library Screening

One million clones of a lgt11 cDNA library
representing mRNAs expressed in ROS 17/2.8
cells were induced to express proteins in Esch-
erichia coli Y1090R2 and assayed for associa-
tion with OC Box I sequences (OC2; Table I) as
described in Ausubel et al. [1989]. After block-
ing with 5 mM Tris/7.5, 0.1 mM EDTA, 0.1 mM
dithiothreitol (DTT) for 1 h at room tempera-
ture, the filters were washed three times,
10 min per wash in binding buffer (1 mM
Tris/pH 7.5, 5 mM NaCl, 5% glycerol, 5% su-
crose, 0.02 mM EDTA, 0.75 mM MgCl2, 0.1 mM
DTT, and 0.1% NP-40) and then hybridized for
1 h at room temperature in binding buffer plus
1 3 106 cpm /ml probe (OC2 sequences, Table
I), 5 mg/ml heat-denatured salmon sperm DNA
and 0.5 mg/ml bovine serum albumin (BSA).
The binding buffer was established [Hoffmann
et al., 1996] to enhance protein–DNA interac-
tions with the OC Box. The filters were washed
in binding buffer four times (10 min per wash)
at room temperature, blotted dry, and exposed
to X-ray film overnight at 280°C with intensi-
fying screens. Phage that showed association
with probe on duplicate filters were isolated.
Each of the isolated phage was further charac-
terized and counterscreened using the methods
described above with the oligonucleotides
WTOC, OC8, and HOX as probes (sequences in
Table I).

The probes were prepared by labeling the
ends with 32P and ligating the oligonucleotides
together. The sense oligonucleotide (300 ng)
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was labeled with 32P-l-ATP, whereas the com-
plimentary oligonucleotide (600 ng) was phos-
phorylated with nonradioactive ATP. The two
reactions were combined, boiled, and slow
cooled. After cooling, ATP and T4 polynucle-
otide ligase were added, and the reaction was
incubated at 16°C overnight. Excess nucleo-
tides were removed by centrifugation of the
sample through a G-25 Sephadex column.

RNA Analysis

Total cellular RNA was extracted with TriZol
(GIBCO/BRL, Gaithersburg, MD) according to
the manufacturer’s instructions. Bone (calvar-
ia and long bone) and soft tissues were har-
vested from 8-week-old mouse (C57/Bl) and rat
(Sprague-Dawley). Frozen tissues were pulver-
ized before resuspension in TriZol solution to
extract the RNA. Extracted RNA was incu-
bated for 30 min at 37°C with 20 U of RNasin
(Promega, Madison, WI) and 20 U of RNase

free DNase I (Promega) in 10 mM Tris-Cl, pH
8.3, 50 mM KCl, and 1.5 mM MgCl2. Samples
were phenol/chloroform extracted, chloroform
extracted, and then ethanol precipitated. RNA
was resuspended in diethylpyrocarbonate-
treated water. RNA (10 mg) was separated by
electrophoresis in 1% agarose/17.6% formalde-
hyde gels, and the integrity of the RNA was
assessed after ethidium bromide staining by
the ratio of 28S/18S ribosomal RNA. RNA was
transferred from the denaturing gel onto Zeta-
Probe membrane (Bio-Rad, Hercules, CA) over-
night by capillary action using 203 SSC buffer
(3 M NaCl, 0.3 M sodium citrate). RNA was
cross-linked to filters by ultraviolet irradiation
for 1 min and the blots were stored until use.
The RNA blots were prehybridized with a so-
lution of 50% formamide, 0.12 M Na2HPO4/pH
7.2, 0.25 M NaCl, 7% sodium dodecyl sulfate
(SDS) and 1 mM EDTA for 10 min at 43°C.
Next, 106 cpm/ml random primed (Prime It Kit;
Stratagene, La Jolla, CA) 32P-dCTP (3,000 Ci/
mmol; NEN, Boston, MA) labeled cDNA probes
specific for the genes specified on each figure
were heat denatured and added to the prehy-
bridization buffer, and the RNA blots were hy-
bridized overnight at 42°C. After hybridiza-
tion, blots were washed in buffer of progressive
stringency starting at 23 SSC (13 SSC 5
0.15 M NaCl/0.015 M sodium citrate), 0.1%
SDS at room temperature, to a final stringency
of 0.13 SSC, 0.1% SDS at 55°C.

Cell Culture

Rat osteosarcoma cells (ROS 17/2.8 [Majeska
et al., 1980]) were grown in F-12 (GIBCO,
Gaithersburg, MD) medium supplemented
with 5% fetal calf serum. Rat UMR-106 [Par-
tridge et al., 1980] were cultured in minimal
essential medium (MEM: GIBCO) supple-
mented with 10% fetal calf serum. HeLa S3
cells [Puck et al., 1956] were grown in Joklik-
modified minimal essential medium (GIBCO)
supplemented with 5% fetal calf serum and 5%
horse serum. Mouse MC3T3-E1 cells [Kodama
et al., 1981] were grown in a-MEM (GIBCO)
plus 10% fetal calf serum. Human osteosar-
coma cell line SAOS-2 (obtained from Ameri-
can Type Culture Collection [ATCC], Rockville,
MD) was grown in Dulbecco-modified Eagle
medium (DME: GIBCO) supplemented with
10% fetal calf serum. H4 rat hepatoma cells
(obtained from ATCC) were grown in MEM
(GIBCO) 5% fetal calf serum and 5% horse

TABLE I. Summary of Characterization of
Binding Specificities of lgt11 Isolates;a The

44 Isolates Are Classified into 5 Different
Categories Based on Their Recognition of the
Sequences Detailed in Lower Part of Tableb

Probesa

WTOC ATGACCCCCAATTAGTCCTGGCAG
OC2 ATGACCCggAATTAGTCCTGGCAG
OC8 ATGACCCgactgctcTCCTGGCAG
HOX GCCTCCAATTAGTGT

No. of
isolatesb Phenotype

Probe

WTOC OC8 HOX

12 OCBP
candidatesc

Y N N

4 Hox-related OC
factorsc

Y N Y

6 Junction
sequence
specific

Y Y N

18 Nonspecific
associations

Y Y Y

4 False positives N N N

aDetail of the sequences used to probe plaque lifts of the
lgt11 library and isolates. Lowercase letters indicate se-
quences that are mutated from the wild-type OC Box I
osteocalcin promoter element. HOX indicates sequences of
the homeodomain binding site that were used to determine
which proteins might be homeodomain related.
bAll of the isolates bind to the OC2 sequences that were
used in the original isolation of the clones.
cCategories that are of interest for further study.
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serum. FRTL-5 cells [Vitti et al., 1982] were
grown in Coon’s modified F12 medium supple-
mented with 5% calf serum and 1.7% 6H
[Ambesi-Impiombato and Perrild, 1989].
Mouse embryo cell line 3T3-L1 was obtained
from ATCC and grown in DME plus 5% fetal
calf serum. Mouse mammary tumor cells
(C127, obtained from ATCC) were grown in
DME plus 5% fetal calf serum and 5% horse
serum. Normal human fetal lung fibroblasts
(IMR-90 [Nichols et al., 1977]) were grown in
DME plus 10% fetal calf serum.

Mouse C2C12 myoblasts were plated in
DME with 15% fetal calf serum. The media was
replaced 24 h after plating with DME and 5%
fetal calf serum also containing 400 ng/ml of
BMP-2 (a gift from Drs. John Wozney and Vicki
Rosen, Genetics Institute, Cambridge, MA).
Cells were harvested 24 h after plating (0
days), 24 h after the addition of BMP-2 (1 day),
and 24 h after each feeding on days 3 and 6 of
BMP-2 treatment.

Normal osteoblasts (ROB cells) obtained
from calvariae of fetal rats of 21-day gestation
were isolated and subjected to sequential di-
gestion of 20, 40, and 90 min at 37°C in 2 mg/ml
collagenase P (Boehringer-Mannheim, India-
napolis, IN) with 0.25% trypsin (Gibco, Grand
Island, NY). Cells released in initial digests
were discarded, and those released from the
third digestion were plated at a density of 4 3
105 cells/100-mm dish. Cells were fed every 2
days with MEM (Gibco) supplemented with
25 mg/ml ascorbic acid. All subsequent feedings
contained medium supplemented with 10% fe-
tal calf serum, 50 mg/ml ascorbic acid, and
10 mM b-glycerol phosphate. Culture condi-
tions for differentiation and mineralization
were used as detailed in Aronow et al. [1990]
and Bellows et al. [1986]. ROB cells were also
treated for 24 h before harvest at three stages
of maturation with 1027 M dexamethasone,
1028- M 1,25(OH)2D3 (a gift from Dr. M. Us-
kokovic, Hoffmann-La Roche Inc., Nutley, NJ)
or 2 ng/ml TGF-b (R&D Systems, Minneapolis,
MN) to assess hormonal and growth factor reg-
ulation.

Plasmids and Constructs

The lgt11 inserts were amplified using PCR
primers which hybridized to lgt11 sequences.
The amplification primers contained a Bgl II
site and the products were digested with Bgl II
and cloned into the Bam H1 site of the PQE

vector (Qiagen, Chatsworth, CA) or digested
with EcoRI and cloned into the EcoRI site of
pGEX-5X-1 or 5X-2 (Pharmacia, Piscataway,
NJ).

Production of GST/Nucleolin Fusion Protein

lgt11 clone number 3 (nucleolin) was sub-
cloned into pGEX-5X-1 (Pharmacia Biotech)
and transformed into in E. coli BL21. Expres-
sion of a GST/nucleolin fusion protein was in-
duced by growth in 0.1 mM IPTG for 1 h. Cells
were pelleted and resuspended in ice-cold
buffer containing 20 mM Tris-Cl/pH 8.0,
0.2 mM EDTA, 1 M NaCl, 1 mM phenylmeth-
ylsulphonyl fluoride, 1 mM DTT, and 1 mg/ml
lysozyme and sonicated three times for 15 s.
Triton X-100 was added to a final concentration
of 1%, and the mix was incubated for 30 min at
4°C. The supernatant was either used at this
stage (bacterial lysate) or purified by binding to
a glutathione Sepharose 4B column (Pharma-
cia Biotech) and releasing the fusion protein by
the addition of excess glutathione (10 mM re-
duced glutathione in 50 mM Tris HCl/pH 8.0).

Gel Mobility Shift Assay

Probe was prepared by 59 end labeling, using
32P-g-ATP and T4 polynucleotide kinase. For
each binding reaction, 40 fmol probe and 5 ml
purified protein were used in a reaction con-
taining 5 mg BSA (fraction V, Sigma), 0.1%
NP40, 10 mM DTT, 1 mg poly(dI-dC), 25% glyc-
erol, 25% sucrose, 37 mM MgCl2, 50 mM Tris-
HCl/pH 7.5, 250 mM NaCl, and 1 mM EDTA.
The suspension was incubated for 10 min at
room temperature. Protein–DNA complexes
were separated on a 6.5% (30:0.8) nondenatur-
ing polyacrylamide gel. The gel was electropho-
resed in 0.53 TBE buffer for 3 h at 250 V. Gels
were dried and autoradiographed on Kodak
XAR film, using an intensifying screen, at
270°C. Competitions were performed in reac-
tions as described above with the addition of
503 molar excess of unlabeled oligonucleotide
competitors.

RESULTS AND DISCUSSION

Isolation of cDNAs Encoding Proteins with
Recognition for the OC Box I Transcriptional
Regulatory Element of the Osteocalcin Gene

A rat osteosarcoma cDNA library in lgt11
was plated and induced to express proteins
using IPTG. Duplicate filter lifts were made of
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each library plate. The membranes were hy-
bridized with a multimerized, radiolabeled
probe (OC2; Table I, top) encoding the tissue
specific 24 nucleotide osteocalcin transcrip-
tional element, OC Box I (nt 299 to 276, rela-
tive to the ATG codon) [Lian et al., 1989b] with
a two-nucleotide mutation. OC2 was chosen
for the original screening because the two-
nucleotide mutation was previously shown to
increase the affinity of all the factors (home-
odomain related and a bone-specific factor
OCBP) that associate with OC Box I [Hoff-
mann et al., 1996]. Positive clones were re-
plated and screened two more times with OC2
to isolate individual phage encoding a protein
with affinity for the altered OC Box I se-
quences. We purified 44 isolates in this man-
ner.

The 44 isolates were then probed with three
additional sequences (detailed in Table I, top)
to determine the binding specificity of each iso-
late with respect to the individual regulatory
elements within the OC Box. The probes con-
tained the wild-type OC Box I sequences
(WTOC), an eight nucleotide mutation of OC
Box I that eliminates homeodomain and OCBP
binding (OC8), or a homeodomain binding con-
sensus sequence (HOX). Binding with the
WTOC probe but not the OC8 mutation was
used to indicate specificity of the protein–DNA
interactions. Association with the HOX probe
was used to determine which clones encoded
proteins belonging to the homeodomain family
of transcription factors that associate with OC
Box I. The binding characteristics of the 44
isolates are summarized in Table 1B. Of the 44
isolates, twelve encoded proteins that bound to
the WTOC probe but not OC8 or HOX se-
quences and were considered candidates for
the OCBP. Four isolates, interacting with the
WTOC and HOX probes but not OC8, were
considered candidates for homeodomain pro-
teins that bind OC Box I. Six isolates bound the
WTOC and OC8 probes but not the HOX probe,
indicating interaction with the junction se-
quences created by ligating multiple OC Box
oligos together. Eighteen isolates bound all of
the probes and represent nonspecific DNA
binding proteins. Thus, our expression screen
for OC Box I binding proteins has yielded two
classes of cDNAs that appear to bind to the
homeodomain motif (four clones) or the over-
lapping recognition motif for a nonhomeodo-
main protein OCBP (12 clones).

Expression of the Isolates During Growth and
Differentiation of the Myoblast and

Osteoblast Phenotype

The 16 isolates that were classified as poten-
tial bone-specific osteocalcin-box binding pro-
teins (OCBP) and homeodomain factor candi-
dates were further screened for tissue
specificity of expression. RNA from 3-week-old
mouse muscle, liver, and calvaria and from rat
osteosarcoma (ROS 17/2.8), mouse myoblast
(C2C12), and human lung fibroblast (IMR-90)
cell lines were hybridized with radiolabeled se-
quences from different lGT11 isolates. Four
representative isolates, clones 3, 19, 35, and
44, illustrate the different patterns of expres-
sion observed (Fig. 1). Clone 3 was a potential
OCBP candidate by virtue of its probe-binding
association (Table I), but it is expressed in all of
the cell and cell lines tested, and therefore does
not exhibit the tissue specificity of the OCBP.

Based on the expression screening, clone 35,
which bound HOX and WTOC probes but not
OC8 in the plaque screening experiment, is a
potential homeodomain clone. The Northern
blot results (Fig. 1) reveal that clone 35 is ex-
pressed more prevalently in muscle than in
bone tissue and cell lines. To assess expression
of clone 35 during muscle cell differentiation,
cultures of the premyogenic line C2C12 were
grown to confluency (controls) and were chron-
ically treated after plating with BMP-2 (which
blocks muscle and induces osteoblastic differ-
entiation) or with TGF-b (which blocks myo-
tube formation but does not mediate osteogenic
differentiation) to alter expression of the mus-
cle cell phenotype. Control and treated cells
were harvested 24 h after feeding on days 1, 3,
and 6 of culture, and RNA was isolated from
each group. Morphologically, the myoblast phe-
notype was clearly repressed by treatment
with BMP-2, as previously reported ([Katagiri
et al., 1994] and our data not shown). The RNA
was probed with radiolabeled osteocalcin
cDNA or clone 35 sequences (Fig. 2). Expres-
sion of clone 35 is clearly downregulated by
treatment with BMP-2. Osteocalcin, a bone
marker, is induced by the BMP-2 treatment,
demonstrating induction of the osteoblast phe-
notype. These data demonstrate an inverse re-
lationship between the expression of clone 35
and osteocalcin. Clone 35 is a potential candi-
date for repression of the bone cell phenotype.
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Clones 19 and 44 are classified as OCBP
candidates (Table I) because they bind to the
WTOC probe but not OC8 and HOX. Clones 19
and 44 are expressed strongly in ROS 17/2.8
cells (Fig. 1) and were therefore tested for ex-
pression during development of the bone cell
phenotype in cultured primary rat calvarial
osteoblasts (ROB). Osteocalcin expression in-
creases during mineralization, reflecting the
extent of differentiation in osteoblasts. Expres-
sion of clone 19 is upregulated as ROB cells
differentiate during mineralization (Fig. 3).
However, it does not parallel the expression of
osteocalcin but peaks at day 23, after osteocal-
cin reaches maximal levels. Thus, clone 19 ap-
pears to represent a marker characteristic for

the most mature osteoblast embedded in a min-
eralized extracellular matrix.

In contrast, clone 44 expression patterns are
similar to those of osteocalcin during develop-
ment of the osteoblast phenotype (Fig. 3). In-
terestingly, clone 44 was also expressed early
in culture on day 3. This early developmental
expression of clone 44 was observed only in
primary cultures, and not in secondary cul-
tures that were passaged on day 5 (data not
shown). Thus, the expression of clone 44 in the
day 3 cells isolated directly from the fetal cal-
varia may reflect residual mRNA from the bone
in vivo. The upregulation of clone 44 at day 10
reflects modifications in gene expression re-
quired for the progression of osteoblast differ-
entiation during this critical transition period
in bone cell phenotype development. Conse-
quently, clone 44 represents a novel marker for
studying bone-cell-specific gene regulatory
mechanisms during osteoblast maturation.

The detection of clone 44 in freshly isolated
osteoblasts from rat calvaria for the primary
cultures appeared inconsistent with the lack of
expression in calvaria tissue of the mouse (Fig.
1, lane 3). To determine whether species spec-
ificity was a factor in tissue detection of clone

Fig. 1. Preliminary analysis of tissue specificity of the lambda
isolates. RNA was isolated from muscle, liver, and calvaria
isolated from 3-week-old mice and from rat osteosarcoma
(ROS), mouse myoblast (C2C12), and human lung fibroblast
(IMR-90) cell cultures. Ten micrograms of RNA from each
sample was separated on a 1% agarose/formaldehyde denatur-
ing gel and transferred overnight by capillary action onto Zeta-
probe membrane. The membranes were hybridized with
random-prime labeled probes generated from the sequences of
the indicated lambda isolates. The EB samples show the
ethidium bromide staining of the ribosomal RNA to indicate
relative loading of the RNA species.

Fig. 2. Clone 35 expression parallels development of the myo-
blast phenotype. C2C12 cells were grown in culture for 1, 3, or
6 days with chronic treatment of bone morphogenic protein
(BMP)-2, transforming growth factor b (TGF-b) or untreated.
Cells harvested on the day of plating (0) were used as a control
to indicate initial expression of genes before development of
the myoblast phenotype. RNA was extracted from each time
point and treatment condition, separated on a 1% agarose/
formaldehyde denaturing gel, and transferred by capillary ac-
tion onto Zetaprobe membrane. Ethidium bromide staining (EB)
of the ribosomal RNA separated on the agarose gel is shown to
indicate relative loading consistency. The northern was probed
with sequences from osteocalcin cDNA (OC) or clone 35 (35).
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44, the representation of clone 44 mRNA in rat
tissues was examined. ROS 17/2.8 cells and a
time course of primary rat calvarial osteoblasts
were included as positive controls (Fig. 4).
Clone 44 could not be detected in whole tissues
by Northern analyses of 15 mg total cellular
RNA per lane (Fig. 4a). Thus, although clone
44 is undetectable in whole tissues, a signifi-
cant mRNA level is expressed in relation to
osteoblast differentiation and its levels in-
crease with maximum osteocalcin transcrip-
tion in primary cultures (Fig. 4b, representing
a different experiment than shown in Fig. 3).
The transcript is also represented in Poly A1
RNA (Fig. 4c) from the bonelike ROS 17/2.8
cells. Thus, these findings indicate that post-
natal tissue levels of clone 44 are not readily
detectable, but the results confirm the abun-
dance of clone 44 in osteoblasts during their
differentiation. Therefore, tissue specificity of
clone 44 could not be established by these stud-
ies.

Sequence Analysis and Characterization of the
cDNA Isolates

Clones 3, 19, 35, and 44 were sequenced and
analyzed for identity or similarity with genes
reported in GenBank. The alignment of the
sequences isolated in the lambda clones is de-
tailed in Figure 5.

Fig. 3. Expression of clones 19 and 44 increases as the bone
cell phenotype develops. Rat calvaria osteoblasts were grown
in culture from 3 to 27 days and harvested at various time
points as indicated above each lane. RNA was extracted from
the cultured cells and separated on a 1% agarose/formaldehyde
denaturing gel and transferred onto Zetaprobe membrane for
northern analysis. The RNA blot was probed with labeled se-
quences from clone 19, clone 44, osteocalcin cDNA (OC), or
18S ribosomal RNA (18s).

Fig. 4. Tissue and osteoblast representation of clone 44
mRNAs. a: Northern blot analysis of total cellular RNA (15-mg
lane) from postnatal rat tissues. Left to right lanes: day 13
calvaria (d13 cal); 8-week-old tissues: calvaria (adlt cal), femur
metaphysis (met), femur diaphysis (femur), thymus, spleen,
uterus, liver, and heart. Ribosomal RNA (r28S) is indicated. The
lower panel shows the ethidium bromide stained gel. b: Tran-
scripts (7.7 kb) of clone 44 detected by Northern blot analysis
in osteoblasts from cultured fetal rat calvaria cells (days 7, 14,
21, and 28) is shown in the top panel using the same labeled
probe as in (a). Middle panel demonstrates alkaline phosphate
(Alk Phos) and osteocalcin mRNA expression in the same blot.
The ribosomal 28S and 18S RNA markers are indicated. The
lower panel shows the ethidium bromide (EtBr) staining of the
same gel. c: Ten microgram total cellular RNA (a) or 2 mg
polyA1 RNA (b) from ROS 17/2.8 cells harvested at
confluency.
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Clone 19 is homologous with a central region
of the VL30 gene, a repetitive genetic element.
Although the VL30 gene is known to produce
an RNA product that can interact with other
nucleic acid molecules, it does not have a
known protein product [Torrent et al., 1994].
VL30 gene expression is upregulated during
malignant growth and anoxia [Firulli et al.,
1993], and VL30 RNA/RNA duplexes assist in
virion packaging. However, it remains unclear
why this clone was identified during our screen
as a candidate for a DNA binding protein. In
our osteoblast cultures, VL30 expression
peaked after osteocalcin in the late mineraliza-
tion period, when apoptosis occurs [Lynch et
al., 1998]. Interestingly, VL30 expression has
been observed in relation to modification in
intracellular calcium [Magun and Rodland,
1995] and with apoptosis induced by glucocor-
ticoids [Gruol and Altschmied, 1993].

Clone 35 (muscle related) is homologous with
the C-terminus of rCAP2 (adenylyl cyclase-
associated protein-2) and contains an addi-
tional 170 nucleotides 39 of the sequences re-
ported in GenBank. The protein contains two
distinct functional regions that are separated
by a proline hinge [Swiston et al., 1995]. The
C-terminus has been demonstrated to bind ac-
tin [Hubberstey et al., 1996] and is associated
with morphological and nutritional defects in
yeast [Gerst et al., 1991]. The messenger for
rCAP2 is expressed as the myoblast phenotype
develops. It is possible that rCAP2 may repress
the osteoblast phenotype in mesenchymal cells.

Clone 3 is homologous with the central re-
gion of rat nucleolin. This region of the gene
contains a nucleic acid binding motif and has
previously been reported to influence tran-
scriptional activity [Yang et al., 1994]. Nucleo-
lin has high affinity for G-G paired DNA
[Hanakahi et al., 1999]. Nucleolin also recog-
nizes matrix attachment regions (MARs)
[Dickinson and Kohwi-Shigematsu, 1995].
MARs are known to influence transcriptional
activity (reviewed in Bode et al. [1995] and
Stein et al. [1991]). The various DNA se-
quences that have been published (MARs
[Dickinson and Kohwi-Shigematsu, 1995] and
promoter sequences [Yang et al., 1994]) and
the OC Box I sequences used in this study are
clearly distinct and do not define a consensus
sequence. Thus, we investigated the specific
association of nucleolin with the OC Box.

Clone 3 (nucleolin) was subcloned into a GST
fusion expression vector, and the chimeric
GST/nucleolin protein was expressed in E. coli
and tested for binding activity either in bacte-
rial cell lysates or after partial purification.
The chimeric protein was assayed for binding
activity and specificity to OC Box I sequences
using a gel mobility shift assay (Fig. 6). The
data demonstrate that nucleolin binds to OC
Box I and has varying affinity for sequences
containing different mutations of OC Box I that
were used as competitors. These studies dem-
onstrate that the pattern of competition does
not reflect the expected properties of the
OCBP. For example, the CC mutant that binds
OCBP [Hoffmann et al., 1996] does not com-
pete for the nucleolin/DNA interaction. In ad-
dition, the interactions with the AA mutant
and the Hox consensus rule out the possibility
that nucleolin is interacting with the homeodo-
main motif. Nucleolin may therefore represent
a third class of factors associating with these
sequences. Nucleolin is a multifunctional phos-
phoprotein whose levels are related to cell pro-
liferation. Nucleolin has recently been shown
to bind to G-rich oligonucleotides that exhibit
antiproliferative activity [Bates et al., 1999].
Nucleolin binding to the OC Box may relate to
the stringently regulated postproliferative ac-
tivation of osteocalcin gene transcription.

Of significance, two other nuclear matrix–
associated transcription factors, CBF/AML and
YY1, regulate expression of the osteocalcin
gene [Merriman et al., 1995; Guo et al., 1995].
The CBFA/AML runt homology factors, includ-
ing the bone-specific CBFA1/AML-3 factor that
exclusively associates with the nuclear matrix
[Merriman et al., 1995], bind to three sites in
the osteocalcin promoter and contribute to
bone tissue-specific expression. YY1 is only
partially associated with the nuclear matrix
and attenuates vitamin D enhancement of os-
teocalcin transcription through binding to the
vitamin D response element (2460 to 2446)
and competition with TFIIB [Guo et al., 1996].
Nucleolin may facilitate additional interac-
tions of the OC gene with the nuclear matrix by
tethering the proximal promoter via OC Box I,
which can both promote and repress transcrip-
tional activation [Hoffmann et al., 1994; Ryoo
et al., 1997].

The largest open reading frame of clone 44 is
only 114 amino acids and is unlikely to encode
a sequence-specific transcription factor. Clone
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Fig. 5. Alignment of clones 3, 19, and 35 with previously known sequences and details of clone 44 sequences.
GenBank sequences are represented graphically to show the alignment of the lambda isolates. The GenBank
accession number and the name of the protein that is homologous with the lambda isolates are given. The upper line
represents the GenBank clone and the numbers indicate the number of nucleotides reported. The lower, dashed lines
represent the lambda isolates and are aligned with the region of the GenBank clone that is found in the isolate. The
numbering on the isolates indicates the nucleotides in the GenBank sequence that are present in the lambda clone.
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44 has homology with rat (GenBank accession
number AA 800581), human (number AA
376739), and mouse (number AA 354375) ex-
pressed sequence tags reported in GenBank.
Full-length cDNAs were isolated from mouse
neonate sympathetic ganglia and a rat lung
library (unpublished data). Thus, clone 44 does
not represent the osteocalcin box binding pro-
tein (OCBP), which is observed in nuclear ex-

tracts from only osteoblastic cell lines [Hoff-
mann et al., 1996]. The functional significance
of clone 44 and related cDNAs remains to be
established.

Further Characterization of Expression of Clone
44 and Significance

We examined whether expression of clone 44
is regulated by hormones and growth factors

Fig. 6. Isolated nucleolin pro-
tein binds OC Box I sequences
with specificity. Clone 3 was
subcloned into a pGEX-5X vec-
tor and transformed into Esche-
richia coli JM105 cells. The
bacteria were grown in the ab-
sence or presence of IPTG at a
1-mM final concentration as in-
dicated above each lane. Pro-
tein was purified from the cul-
tures and used as is (bacterial
lysate) or further isolated using
glutathione-Sepharose beads.
The lysate or purified protein
was then incubated with a ra-
diolabeled 24 nucleotide OC
Box I oligo (WTOC) in the pres-
ence or absence of a nonradio-
labeled competitor as indicated
above each lane. The binding
reactions were separated on a
6.5% 30:0.8 polyacrylamide
gel in 0.53 TBE and autoradio-
graphed. The sequences of the
oligonucleotide competitors
are detailed at the bottom of the
figure.
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that modulate osteocalcin expression (reviewed
in Stein et al. [1996]). Analysis of clone 44
expression in ROB cells treated with dexa-
methasone, vitamin D, and TGF-b and har-
vested during proliferation (day 3), a period of
active deposition of mineral (day 19), and
heavily mineralized mature cultures (day 26),
demonstrates that expression of clone 44 is
influenced by these hormones as a function of
the stage of maturation during osteoblast dif-
ferentiation (Fig. 7). Expression of clone 44 is
evident on day 3 during the early growth stage
(see also Fig. 3). However, clone 44 expression
is not affected by various hormonal treatments
at day 3 in culture but is affected at later
stages of culture, indicating again that this
may represent residual message from the iso-
lated calvaria cells and not active transcrip-
tion. At day 19, expression levels of both 44 and
osteocalcin are elevated. Both transcripts are
repressed by TGF-b. However, unlike osteocal-
cin, clone 44 expression is upregulated by dexa-
methasone and is not stimulated by vitamin D.
On day 26, after mineralization, both osteocal-
cin and clone 44 basal levels are decreased
relative to day 19. Again, the only significant
regulation of clone 44 observed is the decrease
by TGF-b, which parallels the TGF-b1 effect on
osteocalcin [Banerjee et al., 1996b]. Taken to-
gether, our findings indicate clone 44 repre-
sents a novel differentiation-specific marker
that is developmentally regulated and
uniquely responsive to the physiologic media-

tor TGFb. This novel gene represented in clone
44 and designated DRF for differentiation-
related factor may be a useful marker for prob-
ing gene regulatory mechanisms during the
postproliferative transition period of osteoblast
differentiation.
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